Unsupervised Learning of Acoustic Units Using Autoencoders and Kohonen Nets
نویسندگان
چکیده
Often, prior knowledge of subword units is unavailable for low-resource languages. Instead, a global subword unit description, such as a universal phone set, is typically used in such scenarios. One major bottleneck for existing speechprocessing systems is their reliance on transcriptions. Unfortunately, the preponderance of data becoming available everyday is only worsening the problem, as properly transcribing, and hence making this data useful for training speech-processing models, is impossible. This work investigates learning acoustic units in an unsupervised manner from real-world speech data by using a cascade of an autoencoder and a Kohonen net. For this purpose, a deep autoencoder with a bottleneck layer at the center was trained with multiple languages. Once trained, the bottleneck-layer output was used to train a Kohonen net, such that state-level ids can be assigned to the bottleneck outputs. To ascertain how consistent such state-level ids are with respect to the acoustic units, phone-alignment information was used for a part of the data to qualify if indeed a functional relationship existed between the phone ids and the Kohonen state ids and, if yes, whether such relationship can be generalized to data that are not transcribed.
منابع مشابه
An Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network
RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...
متن کاملHow to Train Deep Variational Autoencoders and Probabilistic Ladder Networks
Variational autoencoders are a powerful framework for unsupervised learning. However, previous work has been restricted to shallow models with one or two layers of fully factorized stochastic latent variables, limiting the flexibility of the latent representation. We propose three advances in training algorithms of variational autoencoders, for the first time allowing to train deep models of up...
متن کاملChurn analysis using deep convolutional neural networks and autoencoders
Customer temporal behavioral data was represented as images in order to perform churn prediction by leveraging deep learning architectures prominent in image classification. Supervised learning was performed on labeled data of over 6 million customers using deep convolutional neural networks, which achieved an AUC of 0.743 on the test dataset using no more than 12 temporal features for each cus...
متن کاملWinner-Take-All Autoencoders
In this paper, we propose a winner-take-all method for learning hierarchical sparse representations in an unsupervised fashion. We first introduce fully-connected winner-take-all autoencoders which use mini-batch statistics to directly enforce a lifetime sparsity in the activations of the hidden units. We then propose the convolutional winner-take-all autoencoder which combines the benefits of ...
متن کاملSequence to Sequence Autoencoders for Unsupervised Representation Learning from Audio
This paper describes our contribution to the Acoustic Scene Classification task of the IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events (DCASE 2017). We propose a system for this task using a recurrent sequence to sequence autoencoder for unsupervised representation learning from raw audio files. First, we extract mel-spectrograms from the raw audio files. Secon...
متن کامل